Workshops: The heart of the MagiKats Programme

Every student is assigned to a Stage, based on their academic year and assessed study level.

Stage 2 students are approximately 7 to 9 years old.

The sheets in this pack are a small sample of what is available! These are only samples of the student's worksheets - our teaching methods include discussion and hands-on activities.

Core skills sheets are also provided for independent completion by each student (usually at home).

Topics offered at this level include: place value; developing number skills; ordering, comparing, estimating, rounding; fractions of numbers; working with decimals and fractions; shopping; time; measuring; area and perimeter; ratio and proportion; symmetry and reflections; drawing nets and shapes; handling data; problem solving.

Number Bonds to 100

Fill in the missing gaps in the caterpillars, counting in 10s to 100. You can use a 100 board to help, if you want.

Maths Stage 2: Number Bonds

Find pairs on the caterpillar that add to 100. Colour pairs to match each other but no other numbers. Use different colours for each pair.

E 10 20 30 40 50 60 70 80 90 100

Now fill in the gaps in these sums:

Draw a line to join the pairs of numbers that add to make 100.

Look at the numbers below. Find sets of three numbers to make a total of 100. You should find at least 3 sets of 3 numbers.

Use the numbers from the circles above to complete the sums. (Each one should be different, but you can use a number more than once.)

		+	= 100
	_	+	 = 100
		-	 = 100
		-	 = 100
		-	 = 100
+		+	 = 100
+		+	 = 100

Maths Stage 2: Number Bonds

Now you've been over your number bonds to 100, can you think of any ways you can use these to help you in everyday life?

Can you use your number bonds to 100 to answer these questions?

- I have 100 sweets and give 15 to my sister and 15 to my brother. How many do I have left? 1)
- A packet has 100 balloons in it. Sarah blows up 20, how many are left to blow up? 2)
- Out of a bumper pack of 100 Christmas cards, Joe gives 10 to his family 3) and 15 to his friends. How many does he have left for next year?
- There are 100 pink and blue cup cakes in a tin. 40 have pink icing, how many have blue? 4)
- Hannah's mother has a box of 100 mini chocolate bars. Hannah wants 5) to give 30 to friends, and have at least 10 left for herself. Can she do this?
- Keith has a bag of 100 batteries. He needs 4 for the radio, 6) and 6 for the stereo. How many will he have left? 9
- Mrs Kent has a box with 100 pencils in it. She keeps 30 for her class 7) at school. How many does she have left for the other classes?

© MagiKats Ltd

Write each amount in words.

1)	£3.37	
2)	£43.24	
3)	£8.70	
4)	£86.23	
5)	£7.13	
6)	£56.55	
7)	£4.41	
8)	£39.61	
9)	£83.73	
10)	£5.22	

0

Write each amount in numbers.

1)	eighty six pounds and ninety eight pence.		$\left(\begin{array}{c} 0 \\ \end{array}\right)$
2)	eighty seven pounds and twenty eight pence.		
3)	eighty six pounds and eight pence.		(
4)	nine pounds and two pence.	5	8
5)	ninety five pounds and ninety two pence.	7	
6)	one pound and forty seven pence.		9
7)	eight pounds and twenty three pence.	6	
8)	two pounds and ninety five pence.	1	
9)	twenty nine pounds and fifteen pence.	L	0
10)	fifty one pounds and twenty five pence.	3	

Maths Stage 2: Money

Working with money and prices often involves using percentages.

"Per cent" means "out of 100" and is often written %.

So 10% means 10 out of 100.

Some common percentages are used all the time so try to remember them!

50% means 50 out of 100

As a fraction this would be $\frac{50}{100}$ or $\frac{1}{2}$

As a decimal it would be 50 hundredths so 0.50 (usually written 0.5)

1) Complete these statements: the first one is done for you.

- a) $\frac{1}{2}$ is the same as 0.5 which is the same as 50%
- b) $\frac{1}{4}$ is the same as 0.25 which is the same as _____ %
- c) $\frac{3}{4}$ is the same as _____ which is the same as 75%
- d) $\frac{1}{10}$ is the same as _____ which is the same as _____ %
- e) $\frac{1}{1}$ is the same as _____ which is the same as _____ %

Subtracting larger numbers in columns

Let's get warmed up!

Answer these sums as quickly as you can! Do not use your fingers! If you need to check an answer then draw in dots to help you count on.

Do you know the difference between digits and numbers?

Digits are the individual figures that make up numbers. So, **digits** are like **letters** and **numbers** are like **words** – you use letters to make words, and digits to make numbers! e.g. 5238 – the **digits** are 5,2,3 and 8, and the **number** is five thousand, two hundred and thirty-eight.

Now, as you know, digits can mean different things depending on where they are in the number.

Can you tell what the digit 3 shows in these numbers? (i.e. ones, tens, hundreds, thousands...)

4321	
3622	
7103	
2436	

Break these numbers up to show what each digit represents.

		Thousands	Hundreds	Tens	Ones
e.g. No	. 3851 w it's your turn!	3	8	5	1
1)	7920				
2)	358				
3)	6672				
4)	3451				
5)	What are the digits in f	igure 1?			
6)	What is the number in [.]	figure 2?			
7)	What is the third digit in	n figure 3?			
8)	What are the second a	nd fourth digits i	n figure 4?		
9)	Which is the biggest nu	mber?			
10)	Which has the least am	nount of hundred	s?		

2-3=?

5879

Unfortunately, not all column subtraction is quite so straightforward.

If we take the sum

385 -127

Start from the ones column, work down.

3 8 **7**

-125

But, what happens when we try to subtract the ones column? If we've got 5 apples on a table, can we take away 7 apples? No! We can't!

Why can't we work upwards for this column? Because if we do, we change the sum to

Which means we are not doing the sum we've been asked to do!

We have to keep the sum the same way round, so we need to find a way to change the top line so we have more than 5 to take away from. Can you think of any way we can do this?

Remember breaking down numbers into columns? Try it for this sum:-

This can help us see a way to give us more than 5 in the top of the ones column. But how?! We need to borrow a ten from the tens column and use it to make the ones column bigger!

At the moment, how many tens do we have on the top line?

If we 'borrowed' one of these tens from the top line (to add to the ones column), how many tens would we have left? ____

If we move that borrowed ten and add it to the ones column on the top line, how many ones will we have now?

So,

	3	8	5	1
-	1	2	7	
			8	-

we borrow a ten, meaning we have 7 tens instead of 8 we move the borrowed ten and add it onto the ones, making 15 instead of 5 now we have enough ones to subtract downwards. 15 - 7 = 8

Now, we need to move on to subtract the next column (tens column), remembering we are now doing 7-2, Not 8-2

This is why we start in the ones column, so we can be sure to borrow (if we need to) before we subtract.

11) Write out in columns and complete this sum, making sure you apply ALL the rules!

730083-216554=

Maths Stage 2: Understanding Numbers to 1000	
Reading and Writing Numbers 16 00 500	
Write the number in words. Try to think hard about those spellings!	₽
1) 841	
2) 11	
3) 550	
4) 791	
5) 96	
That's a lot of writing! Take a break!	
6) 246	
7) 461	
8) 803	
9) 15	
10) 14	

Write the numbers.

1)	one hundred and eighteen
2)	sixty four
3)	nine hundred and four
4)	eighty five
5)	forty four
6)	five hundred and sixty two
7)	sixty
8)	nine hundred and ninety three
9)	two hundred and forty five
10)	five hundred and twenty four

© MagiKats Ltd

5)	241		

4) 11

6)	584	
7)	850	

8)	242		

9)	23				

10) 596

 $\overline{\langle}$

3(

1) Match the numbers:

134 —	two hundred and fifty seven	712	six hundred and twenty nine					
320	five hundred and seventeen		one hundred and eighty three					
517	eight hundred and six	821	nine hundred and thirty six					
101	four hundred and fourteen	183	seven hundred and twelve					
257	one hundred and thirty four 440 two hundred and two							
806	one hundred and one	936	eight hundred and twenty one					
911	three hundred and twenty	202	five hundred and sixty eight					
414	nine hundred and eleven	568	four hundred and forty					
2) Write the number that is: One more than								
365 _	529	320	349					
301 _	199	_ 330 _						
One	e less than							
365 _	529	320	349					
301 _	199	330	821					

© MagiKats Ltd

Write out the place values of the numbers e.g. 212 is 2 hundreds, one ten and 2 ones.

1)	92	
2)	285	
3)	488	
4)	716	
5)	79	
6)	247	
7)	551	
8)	881	
9)	32	
10)	209	

16 OB SIR

Colour the pairs that make the same number.

312	103	Three hundreds, zero tens and two ones	Three hundreds and two tens	
Two hundreds three tens and two ones	302	Two hundred and thirty one	One hundred, one ten and three ones	
Two hundred and one ten and three ones	One hundred and three	130	200 + 10 + 3	
One less than three hundred	200 + 30 + 2 One more than hundred and ni		Two hundred and twenty three	
One hundred and thirteen	299	Three hundred and twelve	100 + 30 + 0	
Five hundred and ten	500 + 10 + 0	223	231	
200 + 90 + 9	320	510	Two hundred, nine tens and nine ones	

Mark and then correct Sam's homework.

Write the numbers shown below 210 1) two hundred and ten 416 2) four hundred and sixty 590 3) five hundred and nine 211 two hundred and eleven 640 5) six hundred and fourteen \bigcirc 6) three hundred and ninety six 396 \bigcirc \bigcirc \bigcirc © MagiKats Ltd

Polygons

Fill in the names in the table below:

Name	Example	Number of Sides or Angles	Name	Example	Number of Sides or Angles
		3			7
		4			8
		5			9
		6			10

Carefully set up your compasses. To do this, fix the (sharp) pencil in the holder so that the compass point and pencil point touch the table together when the compass arms are together.

Now open the compasses to 5cm (use your ruler to get this right).

On a blank sheet, carefully draw a straight line 5cm long. Put your compass point on one end and draw one or two arcs. Now repeat this with the other end of your line. Join each end of your line to a point where two arcs cross.

You have drawn a regular (an equilateral) triangle.

See if you can use the same idea to draw a regular polygon with more than three sides.

Maths Stage 2: Classification of Polygons

Reminder about angles

The angle between two lines is a measure of how much you have to turn one of the lines so it matches the other.

Angles are measured in degrees.

A full turn – going all the way round – is 360°

A quarter of a turn is a right angle or 90°

An angle that is less than a quarter of a turn is called acute.

An angle that is between $\frac{1}{4}$ and $\frac{1}{4}$ a turn is called obtuse.

An angle that is more than $1/_4$ a turn is called reflex.

A protractor is used to measure angles. Use one now to measure the angles of the equilateral triangle that you drew. What size are the angles?

What do you get if you add together all three angles?

This total will be the same for every triangle so try to remember it!

A diagonal of a polygon joins two vertices and is not a side.

The line CD is a diagonal in each of these polygons.

Name as many of these 3D shapes as you can. Use the 3D shape matching game for help if you need it.

